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The properties of a capillary-porous disperse body are described and a mathema- 
tical model of its structure is constructed. As the model body, gypsum stone, 
which hardens under conditions of oriented mass transfer involving the liquid 
phase, is selected. 

One of the most important tasks before science is development of a rigorous quantitative 
theory of heaL- and mass-transfer processes in capillary-porous bodies with a structure which 
varies during chemical and phase transformations. First of all, it is necessary here to 
solve problems pertaining to construction and mathematical description of a geometrical 
model of a porous disperse structure and to establishment of relations between the elementary 
properties of the geometrical structure, without regard to the conditions under which it has 
formed and to the physieomechanical properties of that porous disperse body. As the model 
body we will consider a hardening system of a monomineral binder (gypsum.) and water, this 
system forming under a dynamic load and with oriented mass transfer involving the liquid 
phase during coagulative structurization. 

Gypsum stone in the general case is characterized by a friable porous structure. The 
integral porosity o~ gypsum after a standard curing period is 45-50%, according to a normal 
consistency test, with most of the pore volume taken up by pores with a radius larger than 
0.] ~m (i000~). This feature of the structure, along with the predominance of coagulation- 
type contacts and the physicochemical properties of the material, contribute to the low 
strength as well as the low water and frost resistance of gypsum products. 

Gypsum stone with physicomechanical characteristics much superior to those of gypsum 
stone obtained by standard curing has been produced at the Institute of Heat and Mass Trans- 
fer (Academy of Sciences of the Belorussian SSR) [I, 2] by molding the plastic mixture of 
gypsum binder and water under a specific pressure of 10 MPa with simultaneous oriented re- 
moval of the excess liquid phase from the mixture during the stage of coagulative structuri- 
zation. The structure of the hardening system is initially organized through the said tech- 
nological processes to ensure a high density of the hardened material, a low porosity with 
a predominance of pores smaller than 0.5 ~m in radius, and formation of crystallization-type 
contacts (phase contacts) with an increasing number and area of contact zones. The integral 
porosity of the material then remains within 15-19%. The distinguishing feature of the re- 
sulting structure is its geometrical directionality, which gives rise to an anisotropy of 
several properties including strength. 

Electron-microscopic examination of the cleavage surface has revealed that the structure 
of this gypsum stone formed under pressure (Fig. I) is, from the earliest stage of its build- 
up, very different than that of gypsum stone produced by standard curing (Fig. 2). The 
latter is characterized by a random disorientation of long acicular crystals, which contri- 
butes to a friable porous structure. As the material ages, its structure undergoes an only 
insignificant evolution. High-strength gypsum stone produced by molding, on the other hand, 
exhibits a schistose structure consisting of prismatic or lamellar crystals with a character- 
istic parallel orientation within small fragments (blocks). The linear dimensions of these 
crystals are much smaller than those in gypsum stone produced by standard curing: compacting 
of the mixture during the molding process and removal of the water from the earliest harden- 
ing stage on limit the crystai growth processes and recrystallization. Such a structure of 
the material ensures a high density and facilitates formation of crystallization-type contacts 

A. V. Lykov Institute of Heat and Mass Transfer, Academy of Sciences of the Belorussian 
SSR, Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 40, No. 2, pp. 288-295, 
February, 1981. Original article submitted December 6, 1979. 

0022-0841/81/4002-0175507.50 �9 1981 Plenum Publishing Corporation 175 



Fig. I. Microstructure of the cleavage surface of high- 
strength gypsum stone. 

between its elements while the number of contacts and the total area of contact zones in- 
creases. All this together results in a high initial strength of gypsum stone produced 
under pressure. 

With the passage of time the material becomes fast stronger. Electron-microscopic 
examination has revealed that in gypsum stone which is 3 days old there begins an inter- 
growth of individual crystals lying parallel to one another. In gypsum stone ~hich is 2 
weeks old the blocks of intergrown crystals cover a large area, and the concept of the 
transverse dimension of a crystal becomes meaningless. There also occurs intergrowth of 
blocks. A significant ingredient of the structural evolution is the appearance, after 2 
weeks, of polysynthetic twins. After 2 months there appear large massifs with such a 
structure and these become increasingly dominant as the specimen of gypsum stone ages fur- 
ther. Single prismatic crystals exist here as relicts and are coordinated with pores. 

A theoretical description of such a structure making it possible to calculate the 
strength of the material requires a mathematical apparatus capable of adequately describing 
the properties of the structure, above all the geometry of the system, in terms of a group 
of parameters defining the constitution and the mutual disposition as well as the volume of 
its elements. Problems of mathematically simulating the geometry of polydisperse systems have 
been so far most rigorously and thoroughly analyzed by Ae F. Polyak and his coauthors. They 
used a model consisting of spherical and elliptical particles [3] and a model consisting of 
particles in the shape of rectangular parallelepipeds [4]. The latter model was found to be 

Fig. 2. Microstructure of gypsum stone obtained by 
standard curing. 
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Fig. 3. ~iodel of particles in the dis- 
perse solid phase. 

most successful, inasmuch as it made possible a simple description of the real geometric 
configuration of various systems including anisotropic ones. 

A drawback common to these and several other models is that, while accounting for the 
size diversity of particles in a real disperse system, they disregard the fact that these 
particles are not geometrically similar to one another. The significance of the form factor 
has been clearly demonstrated in another study [5]. 

For constructing a mathematical model of the structure of a polydisperse system we make 
the following assumptions: ]) the disperse system consists of very many solid particles 
randomly distributed over the volume; 2) the particles of the solid phase have the shape of 
rectangular parallelepipeds with a square base; 3) the disperse system as a whole can be 
subdivided into subsystems consisting of geometrically similar particles of diverse sizes; 
4) all these subsystems are distributed at random with respect to the similarity indicator; 
and 5) the distribution of particles within each subsystem does not depend on their shape 
and is the same in all subsystems~ 

Considering that as the geometrical model here serves an ensemble of rectangular paral- 
lelepipeds, we will further assume that the particles can be oriented with their principal 
axis ] (Fig. 3) in either of the directions x, y, z only. The direction factors for the 
particles will then be 

N~ Ny N~ 
~ = ~ ,  % -  , a ~ -  , a ~ + ~ v + ~ = l ,  (1) 

No No No 
where No is the total number of particles per unit volume and Nx, Ny, Nz are the numbers of 
particles oriented with their axes | in the directions x, y, z, respectively. 

Let the characteristic dimension am of the particles be the maximum length of the base 
edge and let ~ = O/am be the relative characteristic size of a particle (G denoting one side 
of the base of a particle). Let the form factor v be equal to the ratio of lateral edge to 
base edge. 

The number of particles of a certain characteristic size ~ E [qo ~ dq, ~o + dD] and with 
a certain form factor v C [~o -- dr, ~o + d~] will be 

: d N  = Non (~o) ~ (~o) dvd~, (2) 

where ~(~) and n(v) are distribution functions with respect to the characteristic dimension 

and with respect to the form factor, respectively: ~ n(v)d~ = l, and ~ q(~)d~ = ]. Here 
v 0 

~o and ~ are, respectively, some minimum value and maximum value of the form factor for a 
given disperse system. According to study [4], ~o ~ 0.0l-0.] and M~~]O-]O0. Results of ex- 
perimental studies indicate that the distributions $(~) and n(~) are nearly normal ones. 

It is easy to derive expressions for the basic mean-integral parameters of the system. 
For the mean dimension <a> we have 

< a > = a ~ .  (3) 

The total area of inner surfaces per unit volume is 

So = N o a ~ 2 .  (4) 
The total volume of the solid phase per unit volume is 

Vo = N o a ~ .  (5)  
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P o s s i b l e  c o m b i n a t i o n s  o f  c o n t a c t  f o r m a -  
tion in a plane normal to Oz. 

Here 

~, = 2 +---~, ~ = 2 (1 + 2~), ~. ~, (6) 
3 

As the basic dimensionless groups characterizing the geometrical configuration of the system 
we select its dispersion moduli [5] 

So < a > ~1~2 ~t~2 S~ ~ ,a 2 
- -  ( 7 )  

We note that expressions (3)-(7) are more general than the expressions for the same quanti- 
ties in study [5], inasmuch as in our case the values of the selected parameters are mean 
over the entire system rather than over a subsystem with ~ = const. 

We will demonstrate the application of the thus constructed model to a mathematical de- 
scription of the geometric configuration of high-strength gypsum stone which has been pro- 
duced under conditions of oriented transport (say, for specificity, in the direction of the 
Oz axis). In such a system solid particles with a large dimension orientate in a plane nor- 
mal to the 0z axis, i.e., those with ~ ~I ("aciculae") become oriented with their axis ] 
normal to 0z, while those with w < ] ("lamellae") remain oriented with their axis I parallel 
to Oz. Then, starting from the real structure, we arrive at 

I V= 

. % =  ~ ( ~ ) ~ , ~ = % = - ~  n(v)&.  (8) 

v 0 1 

Le t  us d e t e r m i n e  the  number o f  c o n t a c t s  be tween  p a r t i c l e s  o f  the  s o l i d  phase  in  some 
p l a n e  p a s s i n g  t h r o u g h  t h e s e  c o n t a c t s .  We w i l l  f i r s t  c o n s i d e r  c o n t a c t s  whose b a s e  p l a n e  i s  
normal  to  the  0z a x i s .  A c c o r d i n g l y ,  we i s o l a t e  a l a y e r  o f  p a r t i c l e s  a d j a c e n t  to a p l a n e  
normal  to  the  0z a x i s .  O b v i o u s l y ,  c o n t a c t s  o f  o n l y  two forms a re  p o s s i b l e  h e r e  ( F i g .  4 ) .  

Let us examine variant I in Fig. 4. We select a particle of the characteristic size a i 
and with the form factor vi, its axis I oriented in the 0y direction. The number of par- 
ticles dmk characterized by a nonzero probability of being in contact with this particle 
(ai, vi) is equal to the probability of such particles (ak, wk) existing within the volume 
V k times the number dNk of such particles per unit volume. Here Vk = ak(wiai + 2Wkak)(ai + 

3 2 
2Crk) = amnk(~n i + 2Wk~kni + 2~inink + 4~k~) and dN k = Noay~ (nk)n(Wk)dVkd~k �9 The dm k = 
VkdNk, from w~ich follows the total number of particles characterized by a nonzero probabil- 
ity of being in contact With a particle (ai, wi) and oriented in the Oy direction: 

Hence and henceforth 
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Considering that the number of particles (gi, vi) within the layer adjacent to the given 
plane (the thickness of this layer in our case being equal to ~mni) is dm i = ~yN0~m~i~(~i)- 
n(vi)d~id~i, we finally obtain the number of contacts in that plane between particles (ai, 
vi) and particles of all other sizes (ak, Vk) according to variant I (Fig. 4): 

~(c) ~ 4 2Noa=av [ 5 % ~ ) * , * ~  + (1 + 2%) ~ ) * 1 1 .  ( 1 t ) 

We note that the number of contacts between particles (ai, vi) oriented with their axis I in 
the 0x direction and particles (ak, Vk) of the same orientation is N(C) = N(C) The expres- xx yy " 
sions for the number of contacts in all other situations (Fig. 3) are derived in an analo- 
gous manner. 

The total number of contacts in a plane normal to the Oz axis is 

N ~ )  2 = Noa~ (Azr + Bzr ( 1 2) 

where 

~ ( 1 ) ,  16uv2 -(1) ~(=1)) 3 (1) ,  2 (,) +.2%~ (~(=~))~; 

)(1 ' )  B~ = 16 (1 -k- ~ ) -1- + -1- -k ~(o ~) (1 q- 2%). (13)  

We find in exactly the same way that the number of contacts in planes normal to the axes 0x 
and Oy is 

: : Noam (Au~ % q-- B y ~ ) ,  ( 14) 

where 

~ 3~(1) 3 ~ 3 )  80~ (Z ~c(1)s (2) A~2 ~:(1)~:(2) 2 ... ~(~) 4%%~(o~) 

2 (1) 2- (I) 2 2 o_. _ ~(1)~.(1) , , .  3~.(1) B v = 4 ( 1 @ 2 % ) % ~ =  + 4~u[(~= ) -kfl%] 4- 4a~(~(oi)) 2 ,  + o % ~ v ~ o ~  q-loayg= + 4cz2s (l)~(a.o ~o + o~z~v~=Q~~ ~(2)~(1) - ~ 0  (15)  

One can analogously derive an expression for the number of contacts between particles within 
the volume of the system, an expression which will obviously be 

N~C) ~ 4 = Noa~ ( A v ~ 3  + Bv~)7 (16) 

Relations (12), (|4), and (16) can be expressed in terms of mean-integral parameters of the 
system, viz., as 

- 2 2 - - +  = A + = - - z s -  - - + B  (17)  

We have thus established a functional dependence of the number of contacts between 
solid particles on the statistical characteristics of the system structure. The dependence 
on the size distribution of particles is accounted for by the parameters ~i (i = I, 2, 3), 
and the dependence on the shape distribution in terms of the form factor is accounted for by 
the coefficients A, B. We note that the last expression (17) is most convenient for analy- 
zing the influence of the form factor of particles, bedause the influence of the size factor 
of particles is here accounted for by a single term ~i~/~ which varies only slightly with 
changes in the function ~(n) [5]. 

Owing to the equality of the relative volume and surface concentrations of the disperse 
phase in a section through the system, the probable contact area F of particles over the 
surface is equal to the product of the areas of the solid particles in that section, i.e., 
to the square of the volume concentration of the solid phase [5]: F=V~ and thus the area of 
contacts per unit volume is readily found to be 

1 
F v = y VoSo. (18) 

For calculating still another important characteristic of the system, namely the average area 
of one contact, we then obtain the expression 

2 A v % 
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In conclusion, we suggest that the proposed method of mathematically describing the 
geometric configuration of high-strength gypsum stone can be easily extended for a descrip- 
tion of the geometrical configuration of various polydisperse systems. 

NOTATION 

a, characteristic dimension of a particle; ~, relative characteristic size of a parti- 
cle; v, form factor; ~x, ~y, ~z, direction factors of particles; m~ and m2, dispersion 
moduli; No, number of solid particles per unit volume; <a >, mean-integral characteristic 
dimension; So, total area of the inner surface of the solid phase per unit volume; Vo, total 
volume of the solid phase per unit volume; and <F >, average area of contact between two 
particles of the solid phase. 
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THERMAL FEATURES OF THE DEHYDRATION TECHNOLOGY OF THERMO- 

AND MOISTURE-LABILE MATERIALS 

E. G. Tutova UDC 663.].047 

The relationship between the main thermal parameters of the dehydration process 
and the technological criteria of the quality of the material is analyzed. The 
choice of methods and drying modes is justified. 

The principles and methods of dehydration are based on a study of the technological 
properties of the object being investigated. Multicomponent systems with labile centers and 
bonds, typical representatives of which are materials of biological origin~ particularly 
micropreparations and products of microbe biosynthesis, are especially complex in this plan. 
The difficulty in developing an optimum drying technology for microbiological materials is 
due to the large variety of forms characterized by a difference in the physicochemical pro- 
perties and responses to the action of the surrounding medium [I-3] and also the high ini- 
tial moisture content of the product (95.0-99.5%). Microbiological materials have not been 
investigated to any great extent as objects of drying, and investigations in this area, as 
a rule, have only been of a partial nature [4, 5]. 

In the present paper we consider a wide spectrum of microbiological materials including 
objects of different kinds: vegetative cultures, spore-forming bacterial forms, and the 
products of microbe biosynthesis. The technological criterion (the quality characteristic) 
of the system is assumed to be the survivability (preservability) of the preparation, 
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